Question 1133436


Statistical file:

{ {{{highlight(14)}}}, 25, 26, 31, 35, 49, 50, 55, 56, 75,76, 82, 85}

1. Minimum: {{{14}}}

{ 14, 25, 26, 31, 35, 49, 50, 55, 56, 75,76, 82, {{{highlight(85)}}} }

2.Maximum: {{{85}}}	

 { 14, 25, 26, 31, 35, 49,{{{highlight( 50)}}}, 55, 56, 75,76, 82,  85}

3. Median: {{{50}}}

4.Quartile {{{Q[1]}}} is the median in the lower half of the data

{{{Q[1]=(26+31)/2= 28.5}}}

5. Quartile {{{Q[3] is the median in the upper half of data

{{{Q[3]=(75+76)/2= 75.5}}}


=>5 number summary:
____{{{14}}}__, ___{{{85}}}____, ___{{{50}}}____, ___{{{28.5}}}___, ___{{{75.5}}}___ 


The range of a data set is the distance between the maximum and minimum value. To compute the range of a data set, we subtract the minimum from the maximum:

{{{range = maximum - minimum}}}
{{{range = 85 -14=71}}}

The interquartile range of a data set is the distance between the two quartiles.

{{{Interquartile_ range = Q[3] -Q[1]=75.5-28.5=47}}}