Question 1133393

a. {{{P}}}({{{1}}},{{{3}}}) and {{{Q}}}({{{x}}}, {{{x^2+3x-1}}}) 


{{{slope=(y[2]-y[1])/(x[2]-x[1])}}}



{{{slope=(x^2+3x-1-3)/(x-1)}}}


{{{slope=(x^2+3x-4)/(x-1)}}}


{{{slope=(x^2-x+4x-4)/(x-1)}}}


{{{slope=((x^2-x)+(4x-4))/(x-1)}}}


{{{slope=(x(x-1)+4(x-1))/(x-1)}}}


{{{slope=((x+4)(x-1))/(x-1)}}}


{{{slope=((x+4)cross((x-1)))/cross((x-1))}}}


{{{slope=x+4}}}



b. {{{P}}}({{{x}}}, {{{x^2+3x-1}}}) and {{{Q}}}({{{x+h}}}, ({{{(x+h)^2+3(x+h)-1}}}) 


{{{slope=((x+h)^2+3(x+h)-1-(x^2+3x-1))/(x+h-x)}}}


{{{slope=(h^2 + 2hx + x^2+3x+3h-1-x^2-3x+1)/h}}}


{{{slope=(h^2 + 2hx +cross( x^2)+cross(3x)+3h-cross(1)-cross(x^2)-cross(3x)+cross(1))/h}}}


{{{slope=(h^2 + 2hx +3h)/h}}}


{{{slope=h(h + 2x +3)/h}}}


{{{slope=cross(h)(h + 2x +3)/cross(h)}}}


{{{slope= 2x+h +3}}}