Question 1132391
 Points ({{{4}}}, {{{5}}}) and ({{{10}}},{{{ 5}}}) are vertices of a rectangle. 
The length of the rectangle is twice the width. 
The other vertices are located at ({{{4}}}, ___ ) and ({{{10}}}, ___ ). What could these ordered pairs be?

The length of the rectangle is equal to distance between given points:

{{{L=sqrt((10-4)^2+(5-5)^2)}}}
{{{L=sqrt(6^2+0^2)}}}
{{{L=sqrt(36)}}}
{{{L=6}}}

=> then  the width is {{{W=3}}}

The other vertices are located {{{3}}} units above or below given points.

({{{4}}}, {{{5+3}}}) and ({{{10}}},{{{ 5+3}}})

or

({{{4}}}, {{{5-3}}}) and ({{{10}}},{{{ 5-3}}})


=> the other vertices are located at ({{{4}}}, {{{2}}}) and ({{{10}}}, {{{2}}})  or  at ({{{4}}}, {{{8}}}) and ({{{10}}},{{{ 8}}})


{{{drawing ( 600, 600, -15, 15, -15, 15,

green(line(4,5,10,5)),green(line(4,5,4,2)),green(line(10,2,10,5)),
green(line(4,2,10,2)),
blue(line(4,8,10,8)), blue(line(4,5,4,8)),blue(line(10,5,10,8)),
circle(4,5,.15),circle(4,2,.15),circle(4,8,.15),

circle(10,5,.15),circle(10,2,.15),circle(10,8,.15),

locate(10,5,B),locate(10,2,D),locate(10,8,E),
locate(4,5,A),locate(4,2,C),locate(4,8,F),

graph( 600, 600, -15, 15, -15, 15, 0)) }}}