Question 1132326
<pre>
{{{(x-y)^2*dy = a^2*dx}}}

let x-y = z
      x = y+z
     dx = dy+dz

{{{z^2*dy = a^2*(dy+dz)}}}

{{{z^2*dy = a^2*dy+a^2*dz)}}}

{{{z^2*dy - a^2*dy=a^2*dz)}}}   

{{{(z^2-a^2)*dy = a^2*dz}}}

{{{dy = (a^2*dz)/(z^2-a^2)}}}

{{{int("",dy) = a^2*int( (dz)/(z^2-a^2) )}}}


{{{y=a^2*expr(1/(2a))ln((z-a)/(z+a))+C}}}

{{{y=a*expr(1/2)ln((z-a)/(z+a))+C}}}

Since z = x-y

{{{y=expr(a/2)ln((x-y-a)/(x-y+a))+C}}}

Edwin</pre>