Question 102979
{{{2=sqrt(22)-8x^2}}} I assume this is the problem.
8x^2+2=sqrt(22)
64x^4+32x^2+4=22 Square both sides.
64X^4+32x^2-18=0
32x^4+16x^2-9=0 divide each side by 2.
32x64+16x^2  =9
x^4+.5x^2+.0625=9/32+.0625 Complete the square on the left by dividing each side by 32 an adding .0625 to each side.
(x^2+.25)^2=11/32
x^2+.25=sqrt(11/32)
x^2=-.25+-sqrt(11/16*2)
x^2=(-1+-sqrt(11/2))/4
x=+-sqrt(-1-sqrt(11/2))/2 gives non real results
x=+-sqrt(-1+sqrt(11/2))/2=+-.579915
{{{graph(500,500,-5,5,-5,5,sqrt(22)-8x^2-2)}}}
Ed