Question 1131932


 the perimeter of Δ{{{TAP}}} is:

{{{perimeter=TA+TP+AP}}}

find the length which is equal to distance between points


if vertices are at {{{T}}}({{{1}}}, {{{4}}}),  {{{A}}}({{{4}}},{{{4}}}), and {{{ P}}}({{{3}}},{{{0}}}), we have

{{{TA=sqrt((x-x[1])^2+(y-y[1])^2)}}}...if {{{T}}}({{{1}}}, {{{4}}}),  {{{A}}}({{{4}}},{{{4}}})

{{{TA=sqrt((4-1)^2+(4-4)^2)}}}

{{{TA=sqrt(3^2)}}}

{{{TA=3}}}


{{{TP=sqrt((x-x[1])^2+(y-y[1])^2)}}}...if {{{T}}}({{{1}}}, {{{4}}}),{{{ P}}}({{{3}}},{{{0}}})

{{{TP=sqrt((3-1)^2+(0-4)^2)}}}

{{{TP=sqrt(4+16)}}}

{{{TP=sqrt(20)}}}

{{{TP=sqrt(4*5)}}}

{{{TP=2sqrt(5)}}}

{{{TP=2*2.23606797749979}}}

{{{TP=4.47}}}



{{{AP=sqrt((x-x[1])^2+(y-y[1])^2)}}}....{{{A}}}({{{4}}},{{{4}}}),{{{ P}}}({{{3}}},{{{0}}})

{{{AP=sqrt((4-3)^2+(4-0)^2)}}}

{{{AP=sqrt(1+16)}}}

{{{AP=sqrt(17)}}}

{{{AP=4.123}}}

{{{perimeter=3+4.47+4.123}}}

{{{perimeter=11.593}}}

{{{perimeter=11.6}}} .......to the nearest tenth unit