Question 1131330

Factor fully (17p^2-26)^2-(8p^2-4)^2
<pre>It's TOTALLY UNNECESSARY to FOIL the 2 BINOMIALS
It's a DIFFERENCE of TWO SQUARES, and is easy as:
{{{(17p^2 - 26)^2 - (8p^2 - 4)^2}}}
{{{((17p^2 - 26) - (8p^2 - 4))((17p^2 - 26) + (8p^2 - 4))}}} ------ Applying {{{matrix(1,3, a^2 - b^2, "=", (a - b)(a + b))}}}
{{{(17p^2 - 26 - 8p^2 + 4)(17p^2 - 26 + 8p^2 - 4))}}}
{{{(9p^2 - 22)(25p^2 - 30)}}}
{{{(9p^2 - 22)5(5p^2 - 6))}}} ------ Factoring out GCF, 5, from the 2nd BINOMIAL
{{{highlight_green(5(9p^2 - 22)(5p^2 - 6)))}}}