Question 1131317


given zeros:

{{{x[1]=3}}}, 
{{{x[2]=-13}}}, and 
{{{x[3]=5 + 4i}}}-> complex roots always come in pairs, so you also have
{{{x[4]=5 -4i}}}


{{{f(x)=(x-x[1])(x-x[2])(x-x[3])(x-x[4])}}}

{{{f(x)=(x-3)(x-(-13))(x-(5 + 4i))(x-(5 -4i))}}}

{{{f(x)=(x-3)(x+13)(x-5 - 4i)(x-5 +4i)}}}

{{{f(x)=(x^2 + 10 x - 39)(x^2 - 10 x + 41)}}}

{{{f(x)=x^4 - 98 x^2 + 800 x - 1599}}}