Question 1131087

The cuboid shown below is made of
solid gold. 
{{{w=20cm}}}
{{{l=40cm}}}
{{{H= 25cm}}}

{{{V=20*25*40}}}
{{{V=20000cm^3}}}

The gold will be melted down to make solid right triangular gold wedges as
shown below. 

I managed to find missing information:

{{{a=0.03m=3cm}}}
{{{b=0.04m=4cm}}}
{{{c=0.05m=5cm}}}
{{{H=0.10m=10cm}}}

{{{V[1]=base*H}}}

your base is a triangle with all three sides different length
for calculating the area of a base when you know the lengths of all three sides use Heron’s formula

the area of a {{{base=sqrt( p(p-a) (p-b) (p-c) )}}} where {{{p}}} is half the perimeter, or   {{{(a+b+c )/2}}}

find {{{p= (a+b+c )/2}}}

{{{p= (3+4+5 )/2}}}
 {{{ p= 6}}}

{{{base=sqrt( 6(6-3) (6-4) (6-5) )}}}
{{{base=sqrt( 6(3) (2) (1) )}}}
{{{base=sqrt( 36 )}}}
{{{base=6cm^2}}}


{{{V[1]=6*10}}}
{{{V[1]=60cm^3}}}

What is the maximum number of gold wedges that can be made from the
cuboid?


{{{V/V[1]=20000cm^3/60cm^3}}}

{{{V/V[1]=2000/6}}}

{{{V/V[1]=333.3333333333333}}}

=>the maximum number of gold wedges that can be made from the
cuboid is {{{333}}}