Question 1130350


 zeros:

{{{x[1]= 3i}}}=> there is also {{{x[2]= -3i}}} (complex roots always come in pairs)

{{{x[3]=-1}}}  ,{{{-1}}} has multiplicity of {{{2}}}


{{{f(x)=(x-x[1])(x-x[2])(x-x[3])^2}}}

{{{f(x)=(x-3i)(x-(-3i))(x-(-1))^2}}}

{{{f(x)=(x-3i)(x+3i)(x+1)^2}}}

{{{f(x)=(x^2-(3i)^2)(x^2+2x+1)}}}

{{{f(x)=(x^2-9i^2)(x^2+2x+1)}}}

{{{f(x)=(x^2-9(-1))(x^2+2x+1)}}}

{{{f(x)=(x^2+9)(x^2+2x+1)}}}

{{{f(x)=x^4 + 2x^3 + 10x^2 + 18x + 9}}}