Question 1130314

Here are the steps required for Finding the Domain of a Rational Function: 

Step 1: A rational function is simply a fraction and in a fraction the denominator cannot equal zero because it would be undefined. 
To find which numbers make the fraction undefined, create an equation where the denominator is not equal to zero.



A. 

{{{f(x)= (-7)/(3x-18) }}}

=>{{{(3x-18)=0 }}}->{{{x=6}}}

domain:
{ {{{x}}} element of {{{R}}}: {{{x<>6}}} }


B. 

{{{f(x)= (5x+10)/(x^2-7x+10) }}}

{{{x^2-7x+10=0 }}}-> {{{(x - 5) (x - 2) = 0 }}}->{{{x=5}}} and {{{x=2}}}


domain:
{ {{{x}}} element of {{{R}}}: {{{x<>5}}} and {{{x<>5}}} }