Question 1130254
{{{1 - 2/b = -3b/(b^2+2b) }}}

{{{b/b - 2/b = -3cross(b)/cross(b)(b+2) }}}

{{{(b - 2)/b = -3/(b+2) }}}.........cross multiply

{{{(b - 2)(b+2)  = -3b}}}

{{{b^2 - 2^2 = -3b}}}

{{{b^2 +3b- 4= 0}}}

{{{b^2 -b+4b- 4= 0}}}

{{{(b^2 -b)+(4b- 4)= 0}}}

{{{b(b -1)+4(b- 1)= 0}}}

{{{(b+4)(b- 1)= 0}}}

solutions:

{{{(b+4)= 0}}}->{{{b=-4}}}

{{{(b- 1)= 0}}}->{{{b=1}}}


check the solutions:

{{{1 - 2/b = -3b/(b^2+2b) }}}->{{{b=-4}}}

{{{1 - 2/-4 = -(3(-4))/((-4)^2+2(-4)) }}}

{{{1 + 1/2 = 12/(16-8) }}}

{{{2/2+1/2 = 12/8 }}}

{{{3/2 = 3/2 }}}-> true; {{{b=-4}}} is a solution


{{{1 - 2/b = -3b/(b^2+2b) }}}->{{{b=1}}}

{{{1 - 2/1 = -(3(1))/((1)^2+2(1)) }}}

{{{1 -2 = -3/(1+2) }}}

{{{-1= -3/3 }}}

{{{-1 = -1 }}}-> true; {{{b=1}}} is a solution


our answers:{{{-4}}}, {{{1}}}


 {{{ graph( 400, 400, -10, 10, -10, 10, 1- 2/x , -3x/(x^2+2x)) }}}