Question 102653
{{{((x^2-3x+2)/(7x-14))/((x^2-1)/(7x+7))}}} Start with the given expression


{{{((x^2-3x+2)/(7x-14))*((7x+7)/(x^2-1))}}} Multiply the first fraction by the reciprocal of the second fraction 



{{{(((x-2)(x-1))/(7x-14))*((7x+7)/(x^2-1))}}} Factor {{{x^2-3x+2}}} to get {{{(x-2)(x-1)}}}  (note: if you need help with factoring, check out this <a href=http://www.algebra.com/algebra/homework/playground/change-this-name4450.solver>solver</a>)


{{{(((x-2)(x-1))/(7(x-2)))*((7x+7)/(x^2-1))}}} Factor {{{7x-14}}} to get {{{7(x-2)}}}  


{{{(((x-2)(x-1))/(7(x-2)))*((7(x+1))/(x^2-1))}}} Factor {{{7x+7}}} to get {{{7(x+1)}}}  


{{{(((x-2)(x-1))/(7(x-2)))*((7(x+1))/((x-1)(x+1)))}}} Factor {{{x^2-1}}} to get {{{(x-1)(x+1)}}}  



{{{((cross((x-2))cross((x-1)))/(cross(7)*cross((x-2))))*((cross(7)*cross((x+1)))/(cross((x-1))cross((x+1))))}}} Cancel all like terms 



{{{1}}} Simplify



So {{{((x^2-3x+2)/(7x-14))/((x^2-1)/(7x+7))}}}  simplifies to {{{1}}}