Question 1129764

Relative maximums are the highest points of a section of a graph
Relative minimums are the lowest points of a section of a graph



function {{{x^5-4x^4-7x^3+14x^2-44x+120 }}}has local maximum and minimum where first derivative is equal to zero:


and it is  {{{5 x^4 - 16 x^3 - 21 x^2 + 28 x - 44=0}}} which is:

{{{x= -1.89}}}
{{{x=4.03}}}


if {{{x= -1.89}}}
{{{y=(-1.89)^5-4(-1.89)^4-7(-1.89)^3+14(-1.89)^2-44(-1.89)+120 }}}
{{{y=225.27}}}


Relative maximum: at point ({{{-1.89}}},{{{225.27}}})


if {{{x= -1.89}}}
{{{y=(4.03)^5-4(4.03)^4-7(4.03)^3+14(4.03)^2-44(4.03)+120 }}}
{{{y=-280.19}}}


Relative minimum: at point ({{{4.03}}},{{{-280.19}}})