Question 1129188

Find an​ nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing​ utility, use it to graph the function and verify the real zeros and the given function value.

n=3;
-3 and 3+5i are zeros;
f (1) = 116

f(x)=
<pre>IGNORE STANBON'S answer.
{{{matrix(1,3, f(x), "=", a(x + 3)(x^2 - 6x + 9 + 25))}}}
{{{matrix(1,3, f(x), "=", a(x + 3)(x^2 - 6x + 34))}}}
a = 1, so we get:
{{{highlight_green(matrix(1,13, f(x), "=", (x + 3)(x^2 - 6x + 34), highlight("======>"), f(x), "=", 
x(x^2 - 6x + 34) + 3(x^2 - 6x + 34), highlight("======>"), 
f(x), "=", x^3 - 6x^2 + 34x + 3x^2 - 18x + 102, highlight("======>"), 
highlight(matrix(1,3, f(x), "=", x^3 - 3x^2 + 16x + 102))))}}}