Question 1129049

Simplify the complex fraction. Assume no division by 0.

(x^-3 - 3x^-4) divided by (3x^-3 - 9x^-4)
<pre>{{{matrix(1,3, (x^- 3 - 3x^- 4), "÷", (3x^- 3 - 9x^- 4))}}}
{{{matrix(1,3, (1/(x^3) - 3(1/x^4)), "÷", (3(1/x^3) - 9(1/x^4)))}}}
{{{matrix(1,3, (1/x^3 - 3/x^4), "÷", (3/x^3 - 9/x^4))}}}
{{{matrix(1,3, ((x^4 - 3x^3)/x^7), "÷", ((3x^4 - 9x^3)/x^7))}}}
{{{matrix(1,3, ((x^4 - 3x^3)/x^7), "*", (x^7/(3x^4 - 9x^3)))}}} ------ Applying KCF
{{{matrix(1,3, x^3(x - 3)/x^7, "*", x^7/(3x^3)(x - 3))}}} ------------- Factoring numerator and denominator
{{{matrix(1,3, cross(x^3)cross((x - 3))/cross(x^7), "*", cross(x^7)/(3cross(x^3))cross((x - 3)))}}} --------- Cancelling numerators and denominators
{{{highlight_green(highlight(1/3))}}}