Question 1129023
The maximum height, {{{ h[max] }}} is where
the diver starts. This is the vertex of a parabola
{{{ d[v] = -b/(2a) }}}
{{{ a = -1 }}}
{{{ b = 2 }}}
{{{ d[v] = -2/(2*(-1)) }}}
{{{ d[v] = 1 }}}
{{{ h(1) = -1^2 + 2*1 + 24 }}}
{{{ h(1) -1 + 2 + 24 }}}
{{{ h(1) = 25 }}}
--------------------
Find {{{ h(d) = 0 }}}
{{{ -d^2 + 2d + 24 = 0 }}}
{{{ ( d + 4 )*(- d + 6 ) = 0 }}}
{{{ d = 6 }}}
C. 6 meters is the answer I get.
Here's the plot:
{{{ graph( 400, 400, -7, 7, -4, 30, -x^2 + 2x + 24) }}} 
The diver has to start at {{{ d=0 }}}. It looks like the
diver then jumps up 1 meter to 25 m above the water
and hits the water 6 m form the cliff.