Question 1128653
<br>
y = ax^3+bx^2+cx+d
y' = 3ax^2+2bx+c
y'' = 6ax+2b<br>
The given information tells us...<br>
y(0) = 15/2  -->  c = 15/2  (1)
y(3) = 6  -->  27a+9b+3c+d = 6 (2)
y'(0) = -3  -->  c = -3  (3)
y''(3) = 0  -->  18a+2b = 0  (4)<br>
Substitute (1) and (3) in (2):<br>
27a+9b-9+15/2 = 6
27a+9b = 15/2
18a+6b = 5 (5)<br>
Subtract (4) from (5):<br>
4b = 5
b = 5/4  (6)<br>
Substitute (6) in (4):<br>
18a+5/2 = 0
a = -5/36<br>
The polynomial is<br>
{{{(-5/36)x^3+(5/4)x^2-3x+(15/2)}}}<br>
A graph...<br>
{{{graph(400,400,-2,10,-2,10,(-5/36)x^3+(5/4)x^2-3x+(15/2))}}}