Question 1128623

Perform the indicated operation. Assume that no denominators are 0. Simplify your answer when possible.

p^3 -p^2q + pq^2 / mp- mq + np -nq divided by q^3 + p^3 / q^2 -p^2
<pre><b>{{{((p^3 - p^2q + pq^2)/(mp- mq + np -nq))/((q^3 + p^3)/(q^2 - p^2))}}} =====> {{{matrix(1,3, (p^3 - p^2q + pq^2)/(mp- mq + np -nq), "÷", (q^3 + p^3)/(q^2 - p^2))}}} =======> {{{matrix(1,3, (p^3 - p^2q + pq^2)/(mp- mq + np -nq), "*", (q^2 - p^2)/(q^3 + p^3))}}}
{{{matrix(1,3, (p(p^2 - pq + q^2))/(m(p- q) + n(p -q)), "*", ((q - p)(q + p))/((q + p)(q^2 - pq + p^2)))}}} ---- Factoring numerators and denominators
{{{matrix(1,3, (p*cross((p^2 - pq + q^2)))/((m + n)cross((p - q))- 1(q - p)), "*", ((q - p)cross((q + p)))/(cross((q + p))cross((q^2 - pq + p^2))))}}} =======> {{{matrix(1,3, p/((m + n)- 1(q - p)), "*", (q - p)/1)}}} =========> {{{matrix(1,3, p/((m + n)- 1cross((q - p))), "*", cross((q - p))/1)}}} ========> {{{highlight(highlight_green(highlight(- p/((m + n))))))}}}</b>
ACCEPT no other ANSWER!!