Question 102471
{{{sqrt(16*z^12)}}}Start with the given expression

{{{sqrt(16*z^2*z^2*z^2*z^2*z^2*z^2)}}} Factor {{{z^12}}} into {{{z^2*z^2*z^2*z^2*z^2*z^2}}}
 
{{{sqrt(16)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)}}} Break up the square root using the identity {{{sqrt(x*y)=sqrt(x)*sqrt(y)}}}
 
{{{4*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)*sqrt(z^2)}}} Take the square root of the perfect square 16 to get 4
 
{{{4*z*z*z*z*z*z}}} Take the square root of the perfect squares {{{z^2}}} to get {{{z}}} 
 
{{{4*z^6}}} Multiply the common terms