Question 1128103

{{{n=3}}}=>  {{{3}}}rd degree
zeros:
{{{x[1]=3}}}
{{{x[2]= 5i}}} -> complex zeros always come in pairs, so you also have
{{{x[3]= -5i}}}

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])}}}

{{{f(x)=(x-3)(x-5i)(x+5i)}}}

{{{f(x)=(x-3)(x^2-(5i)^2)}}}

{{{f(x)=(x-3)(x^2-25i^2)}}}

{{{f(x)=(x-3)(x^2-25(-1))}}}

{{{f(x)=(x-3)(x^2+25)}}}

{{{f(x)=x^3+25x-3x^2-75}}}

{{{f(x)=x^3-3x^2+25x-75}}}



is {{{f(-1)=104}}}?

{{{f(-1)=(-1)^3-3*(-1)^2+25(-1)-75}}}

{{{f(-1)=-1-3-25-75}}}

{{{f(-1)=-104}}}

so, {{{f(-1)=104}}} is not true