Question 1127948
 {{{sqrt(3x+1)-x+3=0}}}

 {{{sqrt(3x+1)=x-3}}}

 {{{(sqrt(3x+1))^2=(x-3)^2}}}

{{{3x+1=x^2-6x+9}}}

{{{0=x^2-6x-3x-1+9}}}

{{{x^2-9x+8=0}}}

{{{x^2-8x-x+8=0}}}

{{{(x^2-8x)-(x-8)=0}}}

{{{x(x-8)-(x-8)=0}}}

{{{(x-1)(x-8)=0}}}

{{{x=1}}}-> because {{{sqrt(3*1+1)>0}}} we cannot use this solution

{{{x=8}}}=>so, only solution we can use


{{{ graph( 600, 600, -10, 10, -10, 10, sqrt(3x+1)-x+3) }}}


your answer is: A. There is only one solution: {{{x = 8}}}.