Question 1127648
-------------------------------------------------
I am running out of time and I keep getting lost in this problem.  Can anyone please help?

Let f(x)= 8/x + 6/x+7.  Find x such that f(x)-1.
------------------------------------------------


You mean, for {{{f(x)=1}}}?



{{{1=8/x+6/x+7}}}

{{{(8/x+6/x+7)x=1*x}}}

{{{8+6+7x=x}}}

{{{7x-x=-8-6}}}

{{{6x=-14}}}

{{{3x=-7}}}

{{{x=-7/3}}}


--------------------------------
You really have this, unlike what you gave:

f(x)=8/x+6/(x+7), and f(x)=1;


{{{8/x+6/(x+7)=1}}}

simplest denominator {{{x(x+7)}}}
;

{{{x(x+7)(8/x+6/(x+7))=x^2+7x}}}

{{{8(x+7)+6x=x^2+7x}}}

{{{8x+56+6x=x^2+7x}}}

{{{x^2-7x-56=0}}},    not factorable for integers


{{{highlight(x=(7+- sqrt(273))/2)}}}