Question 1127363
Find the rule, in general form of a function with:

 the unique zero{{{x[1]= -2}}} and 
passing through the point P({{{-1}}},{{{3}}}) 

{{{y=a(x-x[1])}}}

{{{y=a(x-(-2))}}}

{{{y=a(x+2)}}}

use the point P({{{-1}}},{{{3}}}) 

{{{3=a(-1+2)}}}

{{{3=a(1)}}}

{{{3=a}}}

equation is:

{{{y=3(x+2)}}}

{{{y=3x+6}}}


{{{drawing( 600, 600, -10, 10, -10, 10,
circle(-1,3,.12), locate(-1,3,p(-1,3)),
 graph( 600, 600, -10, 10, -10, 10, 3x+6)) }}} 



or, you have this one too:

{{{y=a*sqrt((x-x[1]))}}}

{{{y=a*sqrt(x-(-2))}}}

{{{y=a*sqrt(x+2)}}}

use the point P({{{-1}}},{{{3}}) 

{{{3=a*sqrt(-1+2)}}}

{{{3=a*sqrt(1)}}}

{{{3=a(1)}}}

{{{3=a}}}

{{{y=3*sqrt(x+2)}}}



{{{drawing( 600, 600, -10, 10, -10, 10,
circle(-1,3,.12), locate(-1,3,p(-1,3)),
 graph( 600, 600, -10, 10, -10, 10, 3sqrt(x+2))) }}}