Question 1127080

{{{f(x)=(1/4)ln(x)}}} 

recall: {{{f(x)=y}}}

To find the inverse, interchange the variables and solve for {{{y}}}.

{{{y=ln(x^(1/4))}}}

{{{x=ln(y^(1/4))}}}

{{{x=ln(y^(1/4))}}}

{{{x=ln(y)/4}}}

{{{4x=ln(y)}}}

{{{y=e^(4x)}}} inverse

{{{f^-1(x)=e^(4x)}}} which is equal to {{{g(x)=e^(4x)}}}