Question 102260
First lets find the slope through the points ({{{-1}}},{{{4}}}) and ({{{5}}},{{{2}}})


{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula (note: *[Tex \Large \left(x_{1},y_{1}\right)] is the first point ({{{-1}}},{{{4}}}) and  *[Tex \Large \left(x_{2},y_{2}\right)] is the second point ({{{5}}},{{{2}}}))


{{{m=(2-4)/(5--1)}}} Plug in {{{y[2]=2}}},{{{y[1]=4}}},{{{x[2]=5}}},{{{x[1]=-1}}}  (these are the coordinates of given points)


{{{m= -2/6}}} Subtract the terms in the numerator {{{2-4}}} to get {{{-2}}}.  Subtract the terms in the denominator {{{5--1}}} to get {{{6}}}

  


{{{m=-1/3}}} Reduce

  

So the slope is

{{{m=-1/3}}}


------------------------------------------------



Now let's use the point-slope formula to find the equation of the line:




------Point-Slope Formula------
{{{y-y[1]=m(x-x[1])}}} where {{{m}}} is the slope, and *[Tex \Large \left(\textrm{x_{1},y_{1}}\right)] is one of the given points


So lets use the Point-Slope Formula to find the equation of the line


{{{y-4=(-1/3)(x--1)}}} Plug in {{{m=-1/3}}}, {{{x[1]=-1}}}, and {{{y[1]=4}}} (these values are given)



{{{y-4=(-1/3)(x+1)}}} Rewrite {{{x--1}}} as {{{x+1}}}



{{{y-4=(-1/3)x+(-1/3)(1)}}} Distribute {{{-1/3}}}


{{{y-4=(-1/3)x-1/3}}} Multiply {{{-1/3}}} and {{{1}}} to get {{{-1/3}}}


{{{y=(-1/3)x-1/3+4}}} Add {{{4}}} to  both sides to isolate y


{{{y=(-1/3)x+11/3}}} Combine like terms {{{-1/3}}} and {{{4}}} to get {{{11/3}}} (note: if you need help with combining fractions, check out this <a href=http://www.algebra.com/algebra/homework/NumericFractions/fractions-solver.solver>solver</a>)



------------------------------------------------------------------------------------------------------------

Answer:



So the equation of the line which goes through the points ({{{-1}}},{{{4}}}) and ({{{5}}},{{{2}}})  is:{{{y=(-1/3)x+11/3}}}


The equation is now in {{{y=mx+b}}} form (which is slope-intercept form) where the slope is {{{m=-1/3}}} and the y-intercept is {{{b=11/3}}}


Notice if we graph the equation {{{y=(-1/3)x+11/3}}} and plot the points ({{{-1}}},{{{4}}}) and ({{{5}}},{{{2}}}),  we get this: (note: if you need help with graphing, check out this <a href=http://www.algebra.com/algebra/homework/Linear-equations/graphing-linear-equations.solver>solver<a>)


{{{drawing(500, 500, -7, 11, -6, 12,
graph(500, 500, -7, 11, -6, 12,(-1/3)x+11/3),
circle(-1,4,0.12),
circle(-1,4,0.12+0.03),
circle(5,2,0.12),
circle(5,2,0.12+0.03)
) }}} Graph of {{{y=(-1/3)x+11/3}}} through the points ({{{-1}}},{{{4}}}) and ({{{5}}},{{{2}}})


Notice how the two points lie on the line. This graphically verifies our answer.