Question 1126702

a) Find the greatest value of y = - x^2 - 6x + 16
b) Find the least value of the expression above if x lies in the interval -11 < x &#8804; 6.
Thank you :)
<pre>a) The greatest value indicates the y-coordinate of the vertex. This is: {{{highlight_green(25)}}}
b) For - 11 < x &#8804; 6, the LEAST value when x = - 10 is: {{{highlight_green(matrix(1,7, y, "=", - (- 10)^2 - 6(- 10) + 16, "=", - 100 + 60 + 16, "=", - 24))}}}
   For - 11 < x &#8804; 6, the LEAST value when x = 6 is: {{{highlight_green(matrix(1,7, y, "=", - (6)^2 - 6(6) + 16, "=", - 36 - 36 + 16, "=", - 56))}}}
Therefore, the LEAST value of {{{matrix(1,3, y, "=", - x^2 - 6x + 16)}}}, if x lies in the interval - 11 < x &#8804; 6 is: {{{highlight_green(- 56)}}}