Question 1126478

if sequence is arithmetic:

{{{a[n]=a[1]+(n-1)d}}} where {{{a[n]=nth}}} term, {{{a[1]=first- term}}}, {{{n}}}=number of terms, {{{d}}}=common difference

in
{{{3}}}, {{{1}}},{{{ 24}}}, {{{6}}}, {{{2}}}, {{{21}}}, {{{9}}},{{{ 3}}},{{{ 20}}}, {{{12}}},{{{ 4}}}, {{{18}}}, {{{15}}},{{{ 5}}}, ..., we cannot find  d=common difference

if sequence geometric:

{{{a[n]=a[1]*r^(n-1)}}} where {{{r}}}=common ratio;  we cannot find  {{{r}}}=common ratio neither


The sequence is neither arithmetic or geometric. The next term {{{cannot}}} be found.