Question 1124295
<font face="Times New Roman" size="+2">


Divide the area by the length to get the width


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{\frac{5x^2y^3}{4rs}}{\frac{3xy}{r}}\ =\ \(\frac{5x^2y^3}{4rs}\)\(\frac{r}{3xy}\)]


You can simplify it from there.
							
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}

</font>