Question 1121045
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ c^2\ +\ 2cd\ +\ d^2\ =\ (c\ +\ d)^2]


Hence the area of the ceiling is:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (c\ +\ d)^2\,\cdot\,(c\ +\ d)\ =\ (c\ +\ d)^3]


Divide the area by the coverage of one can of paint:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{(c\ +\ d)^3}{(c\ +\ d)^2}\ =\ c\ +\ d]
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}
</font>