Question 1120093
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \tan\theta\ =\ \frac{3}{4}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \theta\ \in\ \text{QI}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \frac{\sin\theta}{\cos\theta}\ =\ \frac{3}{4}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  3\cos\theta\ =\ 4\sin\theta]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  9\cos^2\theta\ =\ 16\sin^2\theta]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  9\cos^2\theta\ =\ 16\(1\ -\ \cos^2\theta\)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  25\cos^2\theta\ =\ 16]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos^2\theta\ =\ \frac{16}{25}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos\theta\ =\ \pm\frac{4}{5}]


But *[tex \Large \cos\ >\ 0] in QI, hence


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos\theta\ =\ \frac{4}{5}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \sec\theta\ =\ \frac{1}{\cos\theta}\ =\ \frac{5}{4}]
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}

</font>