Question 1119797
<font face="Times New Roman" size="+2">


Let *[tex \Large x] represent the 10s digit and *[tex \Large y] represent the 1s digit.


We then know the following facts:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ y\ -\ 3]


The number is represented by:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 10x\ +\ y]


And:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \frac{10x\ +\ y}{x\ +\ y}\ =\ 4]


Then


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  10x\ +\ y\ =\ 4x\ +\ 4y]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  6x\ -\ 3y\ =\ 0]


Solve the 2X2 system for *[tex \Large x\ \ ]and*[tex \Large\ \ y].
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}

</font>