Question 100806
2ab/a2(squared)- b2(squared) - b/a-b + 2
:
Assume you mean:
{{{(2ab)/a^2}}} - {{{b^2}}} - {{{b/((a-b))}}} + 2
:
Note we can cancel a in the 1st fraction
{{{(2b)/a}}} - {{{b^2}}} - {{{b/((a-b))}}} + 2
:
The common denominator would be {{{a(a-b)}}}:
{{{((a-b)(2b) - (a)(a-b)(b^2) - (a)(b) + 2(a)(a-b))/(a(a-b))}}}
:
{{{((2ab-2b^2) - (a^2b^2-ab^3) - (ab) + (2a^2-2ab))/(a(a-b))}}}; multiply terms
:
{{{(2ab - 2b^2 - a^2b^2 + ab^3 - ab + 2a^2 - 2ab)/(a(a-b))}}}; remove brackets
:
{{{(2ab - ab - 2ab - 2b^2 - a^2b^2 + ab^3 + 2a^2)/(a(a-b))}}};combine like terms
:
{{{(-ab - 2b^2 - a^2b^2 + ab^3 + 2a^2)/(a(a-b))}}}; that's about all you can do with it