Question 1119592
<font face="Times New Roman" size="+2">


Let *[tex \Large x] represent the denominator of the original fraction.  Then the numerator of the original fraction must be *[tex \Large 2x\ -\ 15].  Hence the original fraction must be *[tex \Large \frac{2x\,-\,15}{x}].  If you increase the numerator by 5 you get *[tex \Large 2x\ -\ 10] and if you increase the denominator by 7, you get *[tex \Large x\ +\ 7], so the new fraction is *[tex \Large \frac{2x\,-\,10}{x\,+\,7}], and this fraction must be equal to *[tex \Large \frac{2}{3}].  So:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{2x\ -\ 10}{x\ +\ 7}\ =\ \frac{2}{3}]


Solve for *[tex \Large x] and then calculate *[tex \Large 2x\ -\ 15] to obtain the values required to reconstruct the original fraction.
								
								
John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
								
{{n}\choose{r}}

</font>