Question 1118176
.
<pre>
  {{{x^4 + 1/x^4}}} = {{{(x^2 + 1/x^2)^2}}}-2 = Replace here x^2 with (1-x) since it is given = {{{(((1-x) + 1/(1-x)))^2}}} - 2 = 


= {{{(((1-x)^2+1)/(1-x))^2}}} - 2 = {{{((1-2x+x^2 + 1)/(1-x))^2}}} - 2 = {{{((2-2x+x^2)/(1-x))^2}}} - 2 = {{{(((2-2x)+x^2)/(1-x))^2}}} - 2 = {{{((2-2x)/(1-x) + x^2/(1-x))^2}}} - 2 


= {{{(2 + x^2/(1-x))^2}}} - 2 = replace {{{x^2/(1-x)}}} with 1, since  {{{x^2}}} = (1-x) is given =


= {{{(2+1)^2}}} - 2 = {{{3^2}}}-2 = 9 - 2 = 7.
</pre>

Solved.