Question 1117621
Order is not important, so this is a problem 
using combinations, not permutations
Number of hands = C( 3,2 ) * C( 12,3 )
C( 3,2 ) = {{{ 3! / (( 3 - 2  )! * 2! ) }}}
C( 3,2 ) = {{{ 6 / 2 }}}
C( 3,2 ) = {{{ 3 }}}
and
C( 12,3 ) = {{{ 12! / (( 12 - 3 )! * 3! ) }}}
C( 12,3 ) = {{{ ( 12*11*10*9*8*7*6*5*4*3*2*1 ) / ( 9*8*7*6*5*4*3*2*1*3*2*1 ) }}}
C( 12,3 ) = {{{ ( 12*11*10 ) / ( 3*2*1 ) }}}
C( 12,3 ) = {{{ 1320 / 6 }}}
C( 12,3 ) = {{{ 220 }}}
------------------------
C( 4,2 )*C( 13,3 ) = {{{ 3*220 }}}
{{{ 3*22 = 660 }}}
There are 660 possible hands
Note that one of the kings counted is a club, so that
won't work, and one of the clubs being counted is a king
and that won't work either, so I need to account for them
Feel free to get another opinion on this