Question 1117949
<font face="Times New Roman" size="+2">


Law of Sines


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{\sin A}{a}\ =\ \frac{\sin B}{b}\ =\ \frac{\sin C}{c}]


SSA gives the ambiguous case.  See diagram.


 *[illustration SSA_LawSines.jpg]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ m\angle C\ =\ \sin^{-1}\(\frac{14\sin 55^\circ}{13}\)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ m\angle C'\ =\ 180^\circ\ -\ m\angle C]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ m\angle B\ =\ 180^\circ\ -\ (55^\circ\ +\ m\angle C)]


OR


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ m\angle B\ =\ 180^\circ\ -\ (55^\circ\ +\ m\angle C')]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ b\ =\ \frac{13\sin B}{\sin 55^\circ}]


You can do your own calculator work to whatever precision is required.


Remember to calculate *[tex \Large b] for both values of *[tex \Large m\angle B]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>