Question 1116952
<font color="black" face="times" size="3">
The formula to compute the monthly payment is 
{{{P = L*(c(1+c)^n)/((1+c)^n-1)}}}
where,
L = loan amount
P = monthly payment
c = interest rate per period
n = number of periods


In this case,
L = unknown
P = 1650
c =  r/12 = 0.05625/12 = 0.0046875
n = 12*y = 12*15 = 180 months


Plug in the given info. Then solve for L
{{{P = L*(c(1+c)^n)/((1+c)^n-1)}}}


{{{1650 = L*(0.0046875(1+0.0046875)^180)/((1+0.0046875)^180-1)}}}


{{{1650 = L*(0.0046875(1.0046875)^180)/((1.0046875)^180-1)}}}


{{{1650 = L*(0.0046875*2.32049057740442)/(2.32049057740442-1)}}}


{{{1650 = L*(0.01087729958159)/(1.32049057740442)}}}


{{{1650 = L*0.00823731707572}}}


{{{(1650)/(0.00823731707572) = (L*0.00823731707572)/(0.00823731707572)}}}


{{{200307.938231912 = L}}}


{{{L = 200307.938231912}}}
Round to the nearest dollar to get L = 200308. This is the max L can be so that P does not exceed 1650 If L = 200308, then P = 1650.


Final Answer: <font color=red>200308 dollars</font>
</font>