Question 1115756
.
<pre>
The numerator = {{{1/(a-b) - 1/(a+b)}}} = {{{(a+b)/((a-b)*(a+b)) - (a-b)/((a-b)*(a+b))}}} = {{{(a+b-a+b)/((a-b)*(a+b))}}} = {{{(2b)/((a-b)*(a+b))}}}.


The denominator = {{{1/(a+b) + 1/(a+b)}}} = {{{2/(a+b)}}}.


The fraction = {{{numerator/denominator}}} = {{{((2b)/((a-b)*(a+b)))/(2/(a+b))}}} = {{{b/(a-b)}}}.
</pre>

Solved.


==================


Ignore writing by &nbsp;@josgarithmetic, &nbsp;because it is the way to &nbsp;NOWHERE.