Question 100208
α = (-2b + sqrt(4b^2 - 4ac))/2a and β = (-2b - sqrt(4b^2 - 4ac))/2a
.
(x - λ)(x - δ) = 0
.
(x - α^2 - β^2)(x - α^2 + β^2) = 0
.
(x - ((-2b + sqrt(4b^2 - 4ac))/2a)^2 - ((-2b - sqrt(4b^2 - 4ac))/2a)^2)(x - α^2 + β^2) = 0
.
(x - (-2b + sqrt(4b^2 - 4ac))^2/4a^2 - (-2b - sqrt(4b^2 - 4ac))^2/4a^2)(x - α^2 + β^2) = 0
.
(x - (4b^2 - 4b*sqrt(4b^2 - 4ac) + 4b^2 - 4ac)/4a^2 - (4b^2 + 4b*sqrt(4b^2 - 4ac) + 4b^2 - 4ac)/4a^2)(x - α^2 + β^2) = 0
.
(x - (8b^2 - 8b*sqrt(b^2 - ac) - 4ac)/4a^2 - (8b^2 + 8b*sqrt(b^2 - ac) - 4ac)/4a^2)(x - α^2 + β^2) = 0
.
(x - (2b^2 - 2b*sqrt(b^2 - ac) - ac)/a^2 - (2b^2 + 2b*sqrt(b^2 - ac) - ac)/a^2)(x - α^2 + β^2) = 0
.
(x + (-2b^2 + 2b*sqrt(b^2 - ac) + ac)/a^2 + (-2b^2 - 2b*sqrt(b^2 - ac) + ac)/a^2)(x - α^2 + β^2) = 0
.
(x + (-4b^2 + 2ac)/a^2)(x - α^2 + β^2) = 0
.
(x + (-4b^2 + 2ac)/a^2)(x - ((-2b + sqrt(4b^2 - 4ac))/2a)^2 + ((-2b - sqrt(4b^2 - 4ac))/2a)^2) = 0
.
(x + (-4b^2 + 2ac)/a^2)(x - (2b^2 - 2b*sqrt(b^2 - ac) - ac)/a^2 + (2b^2 + 2b*sqrt(b^2 - ac) - ac)/a^2) = 0
.
(x + (-4b^2 + 2ac)/a^2)(x + (-2b^2 + 2b*sqrt(b^2 - ac) + ac)/a^2 + (2b^2 + 2b*sqrt(b^2 - ac) - ac)/a^2) = 0
.
(x + (-4b^2 + 2ac)/a^2)(x + 4b*sqrt(b^2 - ac)/a^2) = 0
.
x^2 + x(-4b^2 + 2ac)/a^2 + x*4b*sqrt(b^2 - ac)/a^2 + (-4b^2 + 2ac)4b*sqrt(b^2 - ac)/a^4 = 0