Question 1113547
In order to have a {{{ 5 }}} in the units
digit, at least one of the units digits
of the numbers must be {{{ 5 }}}
Also, the two number must be 3-digit numbers
since {{{ 1000*1000 = 1000000 }}} ( much too high )
-----------------------------------------------------
So, the two numbers look like {{{ ab5 }}}
and {{{ 5ab }}}
The products are:
{{{ ( 100a + 10b + 5 )*( 500 + 10b + a ) }}}
{{{ 50000a + 5000b + 2500 + 1000ab + 100b^2 + 50b + 100a^2 + 10ab + 5a }}}
{{{ 50005a + 5050b + 1010ab + 100*(b a^2 + b^2 ) + 2500 }}}
I know that {{{ a }}} can't be {{{ 2 }}}, since that would
make the product greater than {{{ 92565 }}}, so {{{ a = 1 }}}
{{{ 50005 + 5050b + 1010b + 100 + 100b^2 + 2500 = 92565 }}}
{{{ 100b^2 + 6060b + 52605 = 92565 }}}
I just tried whole numbers on this
{{{ 100*6^2 + 6060*6 + 52605 = 92565 }}}
{{{ 3600 + 36360 + 52605 = 92565 }}}
{{{ 39960 + 52605 = 92565 }}}
{{{ 92565 = 92565 }}}
So the numbers are {{{ 561 }}} and {{{ 165 }}}
( check it )