Question 1112843
<font face="Times New Roman" size="+2">


Given *[tex \Large 0\ <\ x\ <\ \frac{\pi}{2}].  Hence, *[tex \Large \cos x\ > 0], *[tex \Large \sin x\ >\ 0], and *[tex \Large \tan x\ >\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos x\ =\ \frac{3}{\sqrt{10}}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos^2 x\ =\ \frac{9}{10}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \cos^2 x\ =\ 1\ -\ \sin^2 x]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sin^2 x\ =\ \frac{1}{10}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sin x\ =\ \frac{1}{\sqrt{10}}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \tan x\ =\ \frac{\sin x}{\cos x}\ =\ \frac{\frac{1}{\sqrt{10}}}{\frac{3}{\sqrt{10}}}\ =\ \frac{1}{3}]


The rest is just calculator work.  I'll leave that to your capable fingers.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>