Question 1112393
.
<pre>
Regarding arithmetic progression, its first term is 0 and the common difference is  100-0 = 100,

so its 10-th term is  {{{a[10]}}} = 0 + 9*100 = 900.



Regarding geometric progression, its first term is 5 and the common difference is  {{{10/5}}} = 2,

so its 10-th term is  {{{g[10]}}} = {{{5*2^9}}} = 2560.



Comparing these numbers, you can easily make your conclusion.
</pre>

-------------------
There is a bunch of lessons on arithmetic progressions in this site:

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Arithmetic-progressions.lesson>Arithmetic progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/The-proofs-of-the-formulas-for-arithmetic-progressions.lesson>The proofs of the formulas for arithmetic progressions</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Problems-on-arithmetic-progressions.lesson>Problems on arithmetic progressions</A>  

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Word-problems-on-arithmetic-progressions.lesson>Word problems on arithmetic progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Mathematical-induction-and-arithmetic-progressions.lesson>Mathematical induction and arithmetic progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/One-characteristic-property-of-arithmetic-progressions.lesson>One characteristic property of arithmetic progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Sequences-and-series/Solved-problems-on-arithmetic-progressions.lesson>Solved problems on arithmetic progressions</A> 



There is a bunch of lessons on geometric progressions in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Geometric-progressions.lesson>Geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/The-proofs-of-the-formulas-for-geometric-progressions.lesson>The proofs of the formulas for geometric progressions</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Problems-on-geometric-progressions.lesson>Problems on geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Word-problems-on-geometric-progressions.lesson>Word problems on geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/One-characteristic-property-of-geometric-progressions.lesson>One characteristic property of geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Sequences-and-series/Solved-problems-on-geometric-progressions.lesson>Solved problems on geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Sequences-and-series/Fresh-sweet-and-crispy-problem-on-arithmetic-and-geometric-progressions.lesson>Fresh, sweet and crispy problem on arithmetic and geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF =http://www.algebra.com/algebra/homework/Sequences-and-series/Mathematical-induction-and-geometric-progressions.lesson>Mathematical induction and geometric progressions</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Sequences-and-series/Mathematical-induction-for-sequences-other-than-arithmetic-or-geometric.lesson>Mathematical induction for sequences other than arithmetic or geometric</A>



Also, &nbsp;you have this free of charge online textbook in ALGEBRA-II in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A>.


The referred lessons are the part of this online textbook under the topics 

<U>"Arithmetic progressions"</U> &nbsp;and&nbsp; <U>"Geometric progressions"</U>, &nbsp;respectively



Save the link to this textbook together with its description


Free of charge online textbook in ALGEBRA-II
https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson


into your archive and use when it is needed.