Question 1111664
{{{16y-60=-x^2+12x}}}
{{{16y-60=-(x^2-12x)}}}
{{{16y-60 =-(x^2-12x+36-36)}}}
{{{16y-60=-((x-6)^2-36)}}}
{{{16y-60=-(x-6)^2+36}}}
{{{16y-60-36=-(x-6)^2}}}
{{{16y-96=-(x-6)^2}}}
{{{highlight(16(y-6)=-(x-6)^2)}}}


Parabola has vertex as the maximum point of the graph.
Vertical symmetry axis.


Vertex:  (6,6)


Finding focus and directrix:
p, distance of vertex from focus and directrix,
{{{4p=16}}}
{{{p=4}}}
-

Focus:  (2, 6)


Directrix:  y=10