Question 1108169
.
<pre>
Suppose that a+bi is a square root of 5 - 12i. 

Then, (a+bi)^2 = (a^2 - b^2) + (2ab)i = 5 - 12i. 



Equate real and imaginary parts: 

a^2 - b^2 = 5 

2ab = -12 ==> b = -6/a. 


So, a^2 - (-6/a)^2 = 5 

==> a^2 - 36/a^2 = 5 

==> a^4 -5a^2 - 36 = 0. 

==> (a^2 -9)(a^2 + 4) = 0. 

Since a must be real, a = 3 or -3. 

This gives b = 2 or -2, respectively. 



Thus, we have two square roots: 3-2i or -3+2i.
</pre>

--------------
<U>Be aware</U>: the final answer by the other tutor is incorrect !


===============
On complex numbers, there are the lessons in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Complex-numbers-and-arithmetical-operations.lesson>Complex numbers and arithmetical operations on them</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Complex-plane.lesson>Complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Addition-and-subtraction-of-complex-numbers-in-complex-plane.lesson>Addition and subtraction of complex numbers in complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Multiplication-and-division-of-complex-numbers-in-complex-plane-.lesson>Multiplication and division of complex numbers in complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Raising-a-complex-number-to-an-integer-power.lesson>Raising a complex number to an integer power</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/How-to-take-a-root-of-a-complex-number.lesson>How to take a root of a complex number</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Solution-of-the-quadratic-equation-with-real-coefficients-on-complex-domain.lesson>Solution of the quadratic equation with real coefficients on complex domain</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/How-to-take-a-square-root-of-a-complex-number.lesson>How to take a square root of a complex number</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Solution-of-the-quadratic-equation-with-complex-coefficients-on-complex-domain.lesson>Solution of the quadratic equation with complex coefficients on complex domain</A>


&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problems-on-taking-roots-of-complex-numbers.lesson>Solved problems on taking roots of complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problems-on-arithmetic-operations-on-complex-numbers.lesson>Solved problems on arithmetic operations on complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Solved-problem-on-taking-square-roots-of-complex-numbers.lesson>Solved problem on taking square root of complex number</A> (*)

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Miscellaneous-problems-on-complex-numbers.lesson>Miscellaneous problems on complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/Advanced-problem-in-complex-numbers.lesson>Advanced problem on complex numbers</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/An-equation-in-complex-numbers-which-HAS-NO-a-solution.lesson>A curious example of an equation in complex numbers which HAS NO a solution</A>



&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;------>>>&nbsp;&nbsp; Notice that your problem is &nbsp;<U>Problem 1</U>&nbsp; of the lesson marked &nbsp;(*)&nbsp; in the list. &nbsp;&nbsp;<<<------



Also, &nbsp;you have this free of charge online textbook in ALGEBRA-II in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A>.


The referred lessons are the part of this online textbook under the topic &nbsp;"<U>Complex numbers</U>".



Save the link to this textbook together with its description


Free of charge online textbook in ALGEBRA-II
https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson


into your archive and use when it is needed.