Question 1106222
.
<pre>
3x + 5y = -16   (1)
3x - 2y =  -2   (2)


Subtract eq(2) from eq(1). The terms "3x" will cancel each other, and you will get a single equation fo only one unknown "y"

5y - (-2y) = -16 - (-2),   or

7y = -14.


It implies  y = {{{(-14)/7}}} = -2.


It is how the Elimination method works.


Next, from eq(1) find  x:  3x = -16 - 5y = -16 - 5*(-2) = -16 + 10 = -6,

                            x = {{{(-6)/3}}} = -2.

<U>Answer</U>.  x = -2, y = -2.
</pre>