Question 1104703
{{{ p^4 / p^(-4) }}}
--------------------
Doing this the long way:
{{{ (( p*p*p*p )) / (( 1/( p*p*p*p ))) }}}
{{{ ( p*p*p*p)*( p*p*p*p ) = p^8 }}}
--------------------------------
Another way:
Multiply top and bottom by {{{ p^4 }}}
{{{ ( p^4 / p^(-4))*( p^4 / p^4 ) }}}
{{{ p^8 / p^( -4+4 ) }}}
{{{ p^8 / p^0 }}}
{{{ p^8 / 1 = p^8 }}}
--------------------------------
Use {{{ 1/p^n = p^(-n) }}} where {{{ n = -4 }}}
{{{ 1/p^(-4) = p^(-(-4)) }}}
{{{ 1/p^(-4) = p^4 }}}
Apply this to:
{{{ p^4 *( 1/p^(-4) ) }}}
{{{ p^4 * p^4 = p^( 4+4 ) }}}
{{{ p^( 4+4 ) = p^8 }}}
------------------------
Hope this helps