Question 1103074
10 questions.
T/F so the probability of correct answer is 0.5.
Find P(8), P(9), and P(10).
.
.
.
{{{P(X)=C(10,X)*(0.5)^X*(0.5)^(10-X)}}}
{{{P(X)=C(10,X)*(0.5)^(10)}}}
{{{P(X)=C(10,X)/2^10}}}
{{{P(8)=C(10,8)/2^10=45/1024}}}
{{{P(8)=C(10,9)/2^10=10/1024}}}
{{{P(8)=C(10,10)/2^10=1/1024}}}
So,
{{{P=P(8)+P(9)+P(10)}}}
{{{P=(45+10+1)/1024}}}
{{{P=56/1024}}}
{{{P=7/128}}}