Question 1102749
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f(x)\ =\ 2^x]


Replace *[tex \Large f(x)] with *[tex \Large y]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  y\ =\ 2^x]


Solve for *[tex \Large x] in terms of *[tex \Large y]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \log_2(y)\ =\ \log_2\left(2^x\right)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \log_2(y)\ =\ x\log_2(2)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \log_2(y)\ =\ x]


Swap the variables:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \log_2(x)\ =\ y]


Replace *[tex \Large y] with *[tex \Large f^{-1}(x)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  f^{-1}(x)\ =\ \log_2(x)]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  


</font>