Question 1102001
Find the successive ratios, which also will give the value for x in the process.

{{{(x-3)/(x+1)=(x-1)/(x-3)}}}


{{{(x-3)^2=(x+1)(x-1)}}}

{{{x^2-6x+9=x^2-1}}}

{{{-6x+9=-1}}}

{{{6x-9=1}}}

{{{6x=10}}}

{{{x=10/6}}}

{{{highlight(x=5/3)}}}-------value of x


First Term:  {{{x+1=5/3+1=5/3+3/3=highlight(8/3)}}}


Common Ratio:  {{{(x-3)/x+1)}}}

{{{(5/3-3)/(8/3)}}}

{{{(5/3-3)(3/8)}}}

{{{(5-9)/8}}}

{{{-4/8}}}

{{{highlight(r=-1/2)}}}



You may find a formula for sum to infinity if you look in <a href="https://en.wikipedia.org/wiki/Geometric_series">https://en.wikipedia.org/wiki/Geometric_series</a>, or in your textbook.